Microfluidic technologies and their applications in cell biology

27th April 2021

Thorsten Knoll, Fraunhofer IBMT

Outline

- Basics of microfluidics
- Design and fabrication of microfluidic modules
 - Materials
 - Fabrication technologies
- System integration
- Examples of biological application areas and technological solutions @ IBMT

Microfluidics

- Since the 1980's
- Multidisciplinary field physics, engineering, chemistry, nanotechnology,
- Behaviour, precise control, and manipulation of fluids that are geometrically constrained to a small scale (typically sub-millimeter)
- Transport, mixing, separation, ...
- Applications: inkjet printheads, DNA chips, lab-on-chip, cellular biophysics, ...
- "In the same way that integrated circuits allowed for the miniaturization of computers from the size of a room to the size of a notebook, miniaturization has the potential to shrink a room full of instruments into a compact lab-on-a-chip." (Figeys and Pinto, 2000)
- "Micro" features:
 - Small volumes (μL, nL, pL, fL)
 - Small size
 - Low energy consumption
 - Microdomain effects

Basics: macrofluidics vs. microfluidics

Influencing factors and effects	Macro	Micro
Intertia force	X	
Friction forces (viscosity)		Х
Weight force	X	
Capillary force		Х
Turbulent flow	X	
Laminar flow		Х
Diffusion		Х
Boundary surface effects		Х
Surface-to-volume ratio		Х

Edge length	Surface / volume
1 km	0.006 m ⁻¹
1 m	6 m ⁻¹
1 mm	6,000 m ⁻¹
1 µm	6*10 ⁶ m ⁻¹

 \rightarrow 1 µl = 1 mm³ \longrightarrow Droplet: ~ 50 µl

https://lillagreen.at/wp-content/uploads/2017/12/Danube-Bratislava.jpg

© Fraunhofer 2

http://www.elveflow.com/wp-content/uploads/2014/08/organs-on-a-chip-microfluidics.jpg http://blog.timeforslovakia.com/wp-content/uploads/2015/09/11082542_1610982419134738_4653258437494370439_n.jpg http://www.wisegeek.org/what-is-a-capillary-tube.htm#capillary-tube-to-collect-blood-sample https://experiencelife.lifetime.life/article/a-drop-of-blood-can-reveal-every-virus-youve-ever-had/

Basics: turbulent flow vs. laminar flow

Turbulent flow

- Inertia >> inner friction
- Flow profile depends on wall surface
- Random, non-stationary movement, turbulences
- Flow resistance:

 $F = \frac{1}{2}\rho A v^2$

F: flow resistanceρ: densityA: cross sectionv: velocity

Laminar flow

- Inner friction >> Inertia
- Parabolic flow profile
- No time dependency, stationary movement
- Flow resistance (Stoke's law)

 $F = 6\pi \eta v r$

F: flow resistance
η: dynamic viscosity
v: velocity
r: particle radius

Basics: viscosity

Viscosity: measure of a fluid's resistance to deformation at a given rate.

- Newtonian fluids: viscosity is independent of the external force (e.g. water, solvents, salad oils)
- Non-Newtonian fluids: viscosity depends on external force (e.g. ketchup, blood)

Basics: Hagen-Poiseuille's law

- Pressure gradient in capillary (microchannel) \rightarrow laminar flow
- Laminar flow of a homogeneous Newtonian fluid through a tube
- No-slip condition: flow velocity at the wall-fluid-interface is zero \rightarrow adhesion of fluid molecules at the edge layers

Q: volumetric flow rate *V*: volume *t*: time

R: radius of capillary L: length of capillary η : viscosity Δp : pressure difference

- Volumetric flow rate strongly depends on the diameter of the capillary: $V \sim \Delta p R^4$
- Example: blood vessels

Basics: interface effects

Surface tension and capillary effect

- Interaction of molecules with each other (cohesion)
- Striving for minimum surface area
- Liquid on solid surface: adhesion force
- Adhesion > cohesion → wetting
- Contact angle: measure of the relative strength of cohesion and adhesion force
- Young's equation:

- σ_L = Oberflächenspannung der Flüssigkeit
- σ_s = Oberflächenenergie des Festkörpers
- σ_{LS} = Grenzflächenenergie zwischen Flüssigkeit und Festkörper
- Θ = Kontaktwinkel

- $\theta < 90^\circ \rightarrow$ hydrophilic surface
- $\theta > 90^{\circ} \rightarrow$ hydrophobic surface

http://www.wissenslogs.de/wblogs/gallery/51/previews-med/oberflaechenspannung.png http://www.rheinfaktor.de/uploads/tx_mmdamfilelist/altprev_Essilor_CrizalA2_02.jpg https://upload.wikimedia.org/wikipedia/commons/thumb/2/2d/Kontaktwinkel.svg/389px-Kontaktwinkel.svg.png http://www.tamar.co.il/wp-tamar_content/uploads/2014/02/Capillary-Blood-Collection1.jpg

Design and fabrication of microfluidic components and systems

Materials for microfluidic components and systems

Tab. 9.2	Comparison of	materials	commonly	used	in	microtechnology.
----------	---------------	-----------	----------	------	----	------------------

Material		Cost	Frac- ture	Metal- lization	Machin- ability (common methods)	Dielectric constant	Young's Modulus E(GPa)	Thermal Conduc- tivity (WmK ⁻¹)
Single crystal	Si	\$\$\$\$	b,s	Good	Very good	11.8	165	150
	Quartz	\$\$\$\$	b,s	Good	Poor	4.4	87 -	7
	GaAs	\$\$\$\$\$	b,f	Good	Poor	13.1	119	50
	Sapphire	\$\$\$\$\$	b,s	Good	Poor	9.4	490	40
Amor-	Fused	\$\$\$-	b,f	Good	Poor	3.9	72	1.4
phous	silica	\$\$\$\$\$						
	Plastic	\$\$	T,s	Poor	Good	-	_	-
	Paper/ cardboard	\$\$	T,s	Poor	Fair	-	-	-
	Glass	\$\$-\$\$\$\$	b,f	Good	Poor	4.6	64	1.1
Polycrys- talline	Alumina	\$-\$\$\$\$	b,s	Fair	Poor	9.4	400	-30
	Alumi- num	\$\$\$	t,s	Good	Very good		77	-240

Note: b=brittle, t= tough, s=strong, f=fragile, \$=very cheap, \$\$\$=very expensive.

Materials used @ IBMT

- Silicon
- Glass
- PMMA
- Polymer films (PC, COC, PET)
- Photoresist
- PDMS elastomers

Fabrication methods for microfluidic components and systems

Criteria:

- Geometry (e.g. channels, reservoirs), feature size
- Materials (compatibility with different media, cytotoxicity)
- Handling, usability
- Single use or multiple use
- Numbers of pieces
- Fabrication costs

Material	Fabrication method
Silicon, glass	Lithography
	Metallisation (sputtering)
	Etching (wet and dry)
Polymers	Lithography (photoresists)
	Replication techniques (PDMS moulding, injection moulding)
	Printing, embossing
	Die cutting (e.g. adhesive tapes)
	CNC-milling
	Laser structuring
	3D printing

Peripheral fluidic components

- Tubing
 - Elastomer (silicone, Tygon)
 - PEEK
 - • •
- Pumps
 - Hose pumps (peristaltic pumps)
 - Syringe pumps
 - Membrane pumps
- Others
 - Bubble traps
 - Filters

- Valves
 - Magnetic valves
 - Stop-cock valves
 - Clamps
 - • •
- Adapters
 - Luer
 - Mini-Luer
 - Ferrules
 - Chip holders
 - ...

Optical, electrical, thermal etc.

- Optics
 - Microscopy
 - Fluorescence microscopy
 - Standard microscopy systems
 - Customized solutions
- Electrical measurements
 - Impedance (TEER)
 - Cyclovoltammetry

Operation

- Ease-of-use
- Exchange / cleaning

- Temperature regulation
 - Peltier elements
 - Heating cartridges
 - · · · ·
- Sensors
 - Oxygen
 - pH
 - · · · ·
- External actuators
 - Ultrasound
 - RF

. . .

From basics to practice – biological application areas and technological solutions @ IBMT

- Biological applications
 - Single-cell analysis
 - Cell sorting / cell separation
 - Barrier models, transport studies
 - Tumor models (spheroids)

- Technological solutions
 - PDMS flow modules
 - Polymer microchannels
 - Microhole array chip
 - Modular microfluidic cartridges

- Applications
 - SPR imaging
 - Tumor spheroids
- Characteristics
 - Variable channel geometries
 - Robust
 - Re-usable
 - 50 100 pcs.
 - Channel height: 0.1 2 mm
 - Channel width: 0.1 15 mm
 - Simple fluidic interface

Fabrication

- Mould fabrication (CNC milling, 3D printing, microfabrication)
- PDMS moulding (Sylgard 184)
- Plasma-activated bonding (PDMS + glass)

Cast moulding with PDMS elastomers

- "Soft Lithography" (George Whitesides, 1998)
- Feature size down to < 1 μm
- Fast fabrication of small numbers up to several hundred units
 - Fluidic components
 - Silicone mould for further replication steps
 - Stamp for "micro contact printing"
- Silicone elastomer: Polydimethylsiloxane (PDMS), e.g. Sylgard 184 (Corning)
- PDMS: high gas permeability
- Casting mould
 - Metal (aluminium or brass)
 - Silicon with structured functional layer (photoresist)
 - Polymer (PMMA, PC,...)

SPR imaging, virus detection

- Immunosensing diagnostic assay without labels and amplification
- Single-virus detection
- Homogeneous flow distribution

- Active area: ~ 1.4 cm²
- Chamber height: 0.5 mm

SPR imaging, virus detection

- Combine flow cell with prism
- Plasma-activated bonding of PDMS with glass

Spheroids under flow conditions

- Tumor spheroids
- Flow module with 3 channels
- Cross section: 2 mm x 1 mm (w x h)
- Grating to hold spheroids at defined position

Microfabricated polymer microchannels

- Applications
 - Cell sorting
 - Micromixer

- Characteristics
 - Polymer layers on glass or polymer substrates
 - Multi-layer fluidic structure
 - Narrow flow channels (<< 0.1 mm)
 - Integrated electrodes
 - 10 100 pcs.

- Fabrication
 - Lithography (SU-8, dry film resist)
 - Sputtering and etching
 - Laminating

Microfabrication of microfluidic structures

- Microfabrication technologies
 - Lithography
 - Layer deposition (photoresist, metals, insulators)
 - Etching: wet chemical etching (acids and alkaline solutions), dry etching (plasma)

- Lithographic patterning
 - Negative photoresist, liquid
 - SU-8, AZ 125nXT
 - Thickness: between 1 and > 100 μm
 - High lateral resolution, depending on thickness
 - Negative photoresist, solid (DFR dry film resist)
 - Lamination on silicon, glass or polymer substrates
 - Variable thickness
 - Lower lateral resolution

Microfabricated polymer microchannels

Cell sorting chip

- PMMA bottom and lid
- Epoxy channel (SU-8)
- Minimum cross section: 4 μm x 20 μm (w x h)
- Polymer-polymer bonding

PMMA bottom and lid

Microfabricated polymer microchannels

- Channel layer: Dry film resist (epoxy)
- Zig-zag channel

Micromixer

Homogeneous mixing

VISION

13

- Applications
 - Barrier models
 - Mucus
 - Lung, liver, intestine
 - Single-cell positioning and analysis
 - CTCs
 - Lung, liver, intestine
- Fabrication
 - Lithography
 - Deposition
 - Etching

- Characteristics
 - Hole diameter min. 3 μm
 - Regular array of microholes
 - Highly transparent membrane (Si₃N₄, 1.5 μm)

- Applications
 - Barrier models
 - Mucus
 - Lung, liver, intestine
 - Single-cell positioning and analysis
 - CTCs
 - Lung, liver, intestine

Characteristics

- Open and closed versions
- Variable channel geometries
- Electrodes
- 10 200 pcs.

Fabrication

- Lithography, deposition, etching (cavity chip with microholes)
- Injection-moulding
- Die-cutting of PSA tape

Positioning and analysis of single cells

- Active positioning of single cells by applying negative pressure
- Isolation of single cells (~ 1,000 200,000)
- Analysis (fluorescence, impedance, Raman spectrum)
- Picking of designated cells by micro capillaries
- Cultivation, cloning

Positioning and analysis of single cells

Positioning of hMSCs

- Polymer micro-wells on microhole array membrane
- ~1,000 cells (54K(1)-5 Hybridom)
- Medium: soft agar
- Cloning efficiency ~ 90 %

Permeation through mucus barrier

- Simulation of mucus barrier with micro-hole-chip
- Field: pharmacokinetic and drug delivery
- Investigation of oral drug administration
- Nanoparticle transport across the intestinal barrier
- Simulation of mucus barrier for first screening step
- Advantages of micro-hole array chip: small volumes and parallelization

Nanoparticle tracking analysis

Microhole array chip Permeation through mucus barrier

8

75 mm

180

Platform for toxicity screening

Microhole array chip Platform for toxicity screening

Closed system (barrier models)

Open system (single cells)

Microhole array chip Platform for toxicity screening

- Module footprint: 25 cm x 20 cm
- Miniaturized microscope for cell imaging, with integrated temperature unit
- Microfluidic module for cell positioning and cell cultivation
- Fluidic circuit for transport of cell suspension, medium and reagents
- Modules can be operated separately or connected with each other
- Electronic control of all platform components

VISION

Microhole array chip Platform for toxicity screening

Cultivation of HepG2 time: 144 h, medium flow rate: 100 µl/h

Fluorescein diacetate (viable cells) Propidium iodide (dead cells)

A549, addition of Triton-X

Summary

- **VISION**
- Microfluidics technology: promising tools and systems for miniaturized solutions in biotechnology
- IBMT: technological solutions for a broad range of biological applications
- Individual customized combinations of system components
- Consideration of handling issues and cost-efficient fabrication

Thanks to all colleagues from Fraunhofer IBMT! Thanks to all project partners! Thank you very much for your attention!

